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Abstract. High-temperature expansions for the strongly correlated Hubbard model
in the limit of infinite spatial dimension d — oo, with hopping scaled by d—1/2 are
developed for the Gibbs free energy and susceptibility to order T—1° for arbitrary
values of the density. From Padé and other analysis we find no evidence of a phase
transition at a finite critical temperature for any value of the density.

1. Introduction

The Hubbard model [1] has attracted much interest over the years as a possible model
of itinerant ferromagnetism [2-4], and, more recently, in connection with theories of
high-temperature superconductivity [5-7). The model is described by the Hamiltonian

N

N
H=—i Z E (al)aaj,a + a;paila) + U Zni.Ini,l —h Z ("s'.T - ”i,l) (1.1)

(i3} o= i=1 i=1

where (ij} denotes nearest-neighbour lattice sites, q; , (al ,) is the annihilation (cre-
ation) operator for an electron on site ¢ with spin ¢ =1, and n; , = a,T'aa‘-y is the
corresponding number operator. The first term in (1.1) represents the kinetic energy,
with nearest-neighbour hopping energy t, the second term represents an on-site repul-
sion with energy U, and the last term represents the interaction of the electron’s spin
with an external magnetic field A.

In spite of much work, there are very few rigorous results for the Hubbard model.
Certain ground state properties are known exactly for the one-dimensional model
[8-10] and in higher dimensions it is known [11,12] that (1.1), with the number of
electrons equal to N — 1, has a ferromagnetic ground state. On the basis of these re-
sults, and various approximate methods, such as the Hartree-Fock [13] and Gutzwiller
variational [14] methods, it is widely believed that the Hubbard model (1.1) has a fer-
romagnetic ground state, at least near half-filling density. There are no rigorous results
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and there is no common agreement, however, regarding the existence of a ferromag-
netic state, or phase transition, at a finite temperature.

The method of high-temperature series expansions, which has proved so successful
in the study of critical phenomena in classical lattice systems [15], has been applied to
the Hubbard model, but so far with limited success and inconclusive and contradictory
results. Plischke [16] for example, did not take proper account of the anti-commutation
properties of the Fermi operators, while the series of Brauneck [17], Kubo [18] and
Kubo and Tada [19], which corrected this error, were too short and too irregular for
reliable conclusions to be reached. The series of Kubo [18] were also observed to
contain errors [20].

Our purpose here is to report on further series work for the strongly correlated
Hubbard model in which U — oo, i.e. double occupancy of sites by electrons of either
spin is prohibited. In this limit, the Hamiltonian (1.1) is replaced by [21]

N
H=—ty ) 3 (6,8, +al,8,)~h) (n;—n) (1.2)
“.lj) =T, i=1
where
Es’,a =4; 4 (1 - ns’,—a) (1-3)

and the problem is to compute the grand canonical partition function

Zg = U]-l—un;a Tr {exp [-F (H — pN)]}

(1.4)
=Tr [’P H zﬁr" exp (T'HD)‘P]
o=1,1
where 7 = ft,
N
N,=3"m,  N=N+N (1.5)
i=1
=explB(uth)] 2, = expld(u—h)] (1.6)
Ho = Z Z (&-!.aaj,o + a},aa’i,o) (1-7)
{i.g) e=Ti
and the operator

N
P = H (1 — ni.r"’i.l) (1.8)

i=1

projects out doubly occupied states in the trace, taken over all states, in (1.4).

In the following section, we formulate the general problem of generating high-
temperature expansions, in power of 7, for the free energy and magnetic susceptibility
for the strongly correlated model. As a check on our procedure, we recalculated the
square lattice series to order r® and found agreement with Kubo and Tada.
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Instead of further reproduction and extension of existing series in two and three
dimensions we concentrated our attention on the infinite-dimensional limit of the
strongly correlated model. In order to obtain non-trivial results we need to re-scale
the hopping term by d=1/2 before taking the limit of lattice dimensionality d — oo
[22]. In the high-temperature series expansions for this limiting model, only maximally
extended graphs contribute, so that the complexity of the problem is considerably re-
duced. Indeed, some exact results are known for this limiting model [23, 24], and there
is some hope of an exact mean-field-type solution.

We found, however, that due mainly to the anti-commutativity of the Fermi op-
erators, the generation of high-temperature series expansions for even this simplest
limiting Hubbard model was still extremely complicated, and that as a result, com-
puter time limitations restricted us to generatmg series only up to order 719

As in the finite-dimensional case, the series we obtained were quite irregular and
difficult to analyse by simple extrapolation techniques. A simple plot of the suscepti-
bility x ! computed from the series, against 7=1, however, leads us to believe that the
limiting model does not have a phase transition at a finite temperature. This conclu-
sion is supported by Padé analysis [25] and other analyses and is consistent with recent
rigorous results [26] for the related Falicov-Kimball model in the infinite-dimensional
lirnit..

Finally, as a check on the validity of our reciprocal susceptibility plot, we repeated
the calculation for our square lattice series and reached the expected conclusion that
the strongly correlated two-dimensional model does not have a phase transition.

As conventional wisdom dictated that phase transitions become more likely with
increasing dimension, we conjecture that the strongly correlated Hubbard model does
not have a phase transition at a finite temperature in any dimension and for any
density.

2. High-temperature expansions

The simplest and most straightforward way to generate high-temperature expansions
is to expand the exponential in (1.4} in powers of 7 = ft, to obtain

el o _ n v
zo=2f1+ L 5 (| & @etso+ahnin)] ) | 2.
a=1 " Ylije o
where the ‘unperturbed’ grand-canonical partition function Z, is given by
z{,th( I1 N”P) (142 +2)" (2.2)
o=
and the expectation value in (2.1) with respect to the unperturbed system is defined
by
(A)g = 75 Tr (AP H zﬁ,‘”‘P). (2.3)
o=1.1

In order to evaluate the expectation value appearing in (2.1} we expand the sum
raised to the power n and associate with each term ﬁIl,,&jla a ‘particle’ with spin
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o moving from site j to a nearest-neighbour site i. In this way, every term in the
expanded sum is uniquely associated with an n-step movement of some number of
particles on the lattice.

For example, when n = 4, the terms

4 o~ st o2 ot 2 ot o
“1,r“4,r“3,r“2.r“4.1“3,r“;.r“1,r (2.4)
e e T
“3.1“1.1“{,1‘13.1“2.1“1.1“1,1“2,r (2.5)
and
e e .
“g.la‘l.lal,laftlalnaz,Taz,Tal,T (2.6)

are associated with the movements shown in figures 1(a), (#) and (c¢) respectively.

Notice that, in general, from (2.3), the only movements which contribute to the
expectation value in (2.1) are those with the same initial and final particle configu-
rations which have no intermediate doubly occupied sites. The situations shown in
figure 1 are examples of such allowed movements.

4 3
] 2
) ( (2) (3) (4)
3
1 2
(@)

o O ®0 ®O0 06 &0
1 2 1 2 1 2 @_Cz) ®_O
{Q) (1) {2) (3 {4)

Figure 1. Graphical representation of the terms (2.4}, (2.5) and (2.6). @ and @
denote the sites occupied by a spin up and spin down particle respectively and O
denotes an unoccupied site. The final configuration (4) is reached from the initial
configuration (0) through three intermediate particle movements.

To find the expectation value or weight of each allowed movement, we first use the
Fermi anti-commutation relations to group together the operators which act on the
same lattice site. The sign of the weight is then easily seen to be plus (minus) if the
total number of required commutations or transpositions is even (odd). Finally, it is
easily checked that the magnitude of the weight is the product of the weights per site
which are equal to

P, =2, (1-}-::T+zl)_1 (2.7)

if the annihilation operator for spin & is to the right of the creation operator for spin
state o at that site, and equal to
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if the creation operator is to the right of the annihilation operator.
For example, the weight of the terms (2.4}, (2.5) and (2.6) are respectively —p%qz,

Pipq and prlq In general, the magnitude of a weight is easily seen to be the
product of a p, to the power of the number of spin & particles in the corresponding
movement and ¢ to the power of the number of holes. The sign of the weight, however,
must, in general, be determined by actually performing the commutations as described
above. An exception is the case where the particles move on a polygon, such as the
square in llgtlfé‘: 1(&) In such a case, the Sigi’i is plub Uuiu'u:s) for movements mvulvmg
an odd (even) number of particles.

Many particle movementis can, of course, take place on underlying bare graphs,
such as the square, chain of length 2 and disconnected bonds in figure 1, so that in order
to calculate the total contribution arising from a given graph, one must multiply the
number of ways of embedding the bare graph in the lattice by the sum of the number of

Nowed particle movements § : L : i i
allowed particle movements for a given number of spin up and/or spin down particles

on the graph multiplied by their respective weights.

For example, there are 6N ways of embedding a chain of length 2 in the square
lattice of NV sites, four allowed ways of moving one particle, with spin up or spin down,
and four allowed ways of moving two particles, with spins independently up or down,
giving rise to a total contribution of

6N x 4 x {pyq® +p,q° +Pig+2p;p 0+ Pla} - (2.9)

On the other hand, there are N(N — 7) ways of embedding two disconnected bonds
on the square lattice, six ways of assigning four nearest-neighbour labels to the two
bonds and independently one particle of either spin and two movements on each bond
giving a total contribution of

NN =Ty x6x (2p1a+2p,9)". (2.10)

In general, the weight of a disconnected graph can be obtained from the weight of
its component graphs. Thus if a disconnected graph G, is composed of two subgraphs
G, and G, (which may be connected or disconnected), the weight of an N ;-step
movement on G, is given by

Nt
Wab (Na.b) = Z N f]b\'rb!Wa (Na) Wb (Nb) (21]‘)
Na+Np=N,, a
where W, (N,) (W, (N;)) denotes the weight of an N, (N,)-step movement on G,

(Gy)-
Ultimately one is interested in calculating the Gibbs free energy per lattice site in
the thermodynamic limit, i.e. from (2.1), (2.2}, (2.7) and (2.8)

g(ﬁ$p}!p11‘r) =— lﬂnoc Nﬁ ]nZG
(2.12)

I
)
Ngk
=13
e

=a-lin(1 -
8~ In(l

-
1l
—-

where g,, (pT, v 1) is equal to the coefficient of N in the expectation value appearing in

the sum on the right-hand side of (2.1). From the above remarks and (2.8), g,, (pT, pl)
is a multinornial of degree n in p; and p,.
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In zero field A =0, z; = z) = 2, p; = p; = p and ¢ = 1 — 2p, and (2.12) can then
be expressed in the form

n“‘

9(8,p,7) =B In(1~2p) - g~ p(l-?p)Z Ea(“’* (2.13)

where in re-expressing the second term in (2.12), we have made use of the fact that
each contributing graph must have at least one particle and one hole.

Using the convention ag") =0for i <0 and i > n — 2, the particle density in zero
field is given from (2.13) by

p=—g——2p+p(1—2p)2 ,ZD‘”)’ (2.14)

n=2

where
D™ = (i + 1)[al™ - 2a{")]. (2.15)

Similarly, from (2.12) the zero-field susceptibility can be written as

6’9) 2 [ 329 9 9% 39
x=—(— =-8 —-2p P (1~ 2p)(—+—)
oh? /o aptapl op} 0P,/ Spy=p,=p
= Bp+26p*(1 - 2p) ): (") P (2.16)
=3 's:O

and the zero-field specific heat as

s n-2

C, = kp(1 — 2p) Z - 3 eyt (2.17)

n! i=0

where k is Boltzmann’s constant.
The series (2.14) can also be ‘reverted’ to re-express the coefficients of 7™ in (2.13),
(2.16) and (2.17) as polynomials in the density p so that we can write

0(8,p)=F In(1-2p) - (28)7 o1~ p Z "5 A (o2 (2.18)
n=2 'I_D
(n)
x(B,p) = Bp + 2p2(1 - p) Z . ?_:B (p/2)’ (2.19)
and
_ TN o)
Co(B,p) = —(1 - ) Z - Zc‘ (p/2)'. (2.20)
We note in passing that after transforming to operators
1 1 .
€ o = ﬁ (a,., + ia,'_a) c;r,a = -ﬁ(aid - zaI'_a) (2.21)
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the susceptibility series can also be generated from the zero-field fluctuation relation

2B S
x=28p+ Fﬂ >TSS MR, (2.22)
n=2  ifj

where the spin operators S} and S; denote respectively clic;, and cf;¢;; and the
subscript N means that we only retain the term proportional to N in the unperturbed
expectation value. In this formulation, it is easily proved that the only non-vanishing
terms arise from particle movements in which at least two of the particles exchange
their positions. In other words, only the particle movements from two or more particles
contribute to x. The general requirement that there is at least one hole leads to the
form of (2.16).

3. The infinite-dimensional limit

In order to study the high-density limit we need to scale the hopping energy by d=1/2
before taking the limit of lattice dimensionality d to infinity. Thus if we consider
for simplicity d-dimensional hypercubic lattices, only terms with n even contribute in
(2.1), and we obtain

g = Zo{l + 2 E;%%)T( [ > (@6, + a}aaio)] 2“>0}‘ (3.1)

(ilj)’o

Since movements of particles which contribute to (3.1) must return configurations
to their initial state, it is clear that 2n-step movements can extend into at most n
dimensions. If such movements extend into m of the available d > m dimensions, it
follows that the total number of these movements is d!/(d ~ m)!m! times the number
of allowed 2n-step movements in an m-dimensional subspace. These movements then
contribute a factor of order d™~"/m! for large d and it follows that the only 2n-step
movements which contribute in the limit d — oo are those which extend fully into n
dimensions.

By analogy with (2.12) the Gibbs free energy in the infinite-dimensional limit can
thus be expressed in the form

g(8,p1.p) =8 In(1—p,—p) - B> (ggﬁ,—;,yzn (py.py) (3.2)
n=1

where g, (pT, pl) is now the coefficient of N of terms in the expectation value ap-
pearing in the sum over n in (3.1) which arise from particle movements of 2n steps on
bare graphs which extend fully into n dimensions. The expansions of g, x, Cy and p
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in parameter p in the infinite-dimensional limit are the following:

2n 2n-2

1 1 o~ T n) i
g=gh=20) =gl =203 o 3o

m  2n-3

x = Bp+28p°(1 - 210)2(2 S E bt

o 9, 2n-2 (3-3)
Cy = kp(1 —2p)nz_: @ Z (2n)
9n  2n=1
p=2p+p(1-2p) Z Gyl 2 Z Dy,
Equation {3.3) can also be expanded in electron density p as the following:
oo on  In=2

g= —ln(l —2p) — 2‘Bp(l ; Gyl 2 Z A(2n) (p/2)

gy B2 S~ TS pn
x=B8p+ 500 - ) Z i (p/2)’ (3.4)

271 n—2

= Sp(1-p) Z o & c™ (p/2)

The expansion coefficients in (3.3) and (3.4) are tabulated in table 1 and table 2.

So while the complexity of the problem is considerably reduced we still need to
calculate

(i) the number of embeddings of maximally extended bare graphs;

(i1) the number of possible particle movements on such graphs;

(1ii) the sign and magnitude of the weights corresponding to the allowed move-
ments.

Connected and disconnected graphs contribute but in the latter case we only re-
quire the appropriate lattice constants, i.e. the coefficients of N in the number of
embeddings. These are given up to order ten in tables 3 and 4 of the appendix.

Fortunately, the requirement that 2n-step movements must extend into n dimen-
sions, and return the configuration to its initial state, drastically reduces the number
of allowed graphs. Thus the relevant graphs for n = 4, for example, can be conve-
niently classified into 10 classes and for n = 5 into 27 classes. Moregver, if the edges
of a graph which are part of a loop are labelled ‘1-edges’ and the other edges are
labelled as ‘2-edges’, the label of an edge is equal to the number of times a particle
must traverse that edge in an allowed movement on the graph. It follows that by
keeping track of movements on edges, we can discard those movements for which any
given edge label is exceeded. This, of course, reduces the enumeration problem con-
siderably. The aforementioned considerations for calculating the weights associated
with an allowed movement apply here also and the results are given in table 5 of the
appendix,
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The main results, in table 1, give the coefficients in the high-temperature expansion
for the Gibbs free energy, the zerc field susceptibility, specific heat, and density as

functions of the parameter p defined in (3.3). Coefficients of the corresponding series
(3.4) expressed in terms of the density are given in table 2.

4. Numerical analysis

We begin by re-expressing the susceptibility and specific heat series (3.4) in the form

x{em) =8> u, ()" =Y U, (o)™ (4.1)
n=0 n=>_0

T)=k Y v () =k ) _ V(o)™ (4.2)
n=1 n=1

where u,(p) = 2p, Uy(p) = p, U;(p) = 0 and

1—2 g n) 4
uﬂ(zr')=1-)£~—‘?l23g p n>1

(2n)tn! &
(4.3)
(1 -9 ()
>
p(1 - 2p) (2m) 5
vn(p - (2n) 1nl Z '
nx»l (4.4)
2n—
P 1 i
Vale) = Gt Z " Nel2)
35%) is defined as the foliowing
" D(zn) when i =0 and ¢ = 2n —1
) ! (4.5)
) o {2n) < < o o
[ D™ + 260> when 1< i< 2n -2

and the coefficients 5", ™, D*™ B{* and ™ are given in table 1 and table
2.

It will be noted from the table that for a fixed density p, the series coefficients U, ( p)
and V,_{p) have irregular signs so that a straightforward ratio test is inappropriate.

For g > 0.4, the susceptibility series alternate in sign, as do the specific heat
series for p > 0.5. This sign pattern is consistent with a dominant singularity on the
negative real 72 axis (i.e. with an imaginary temperature) at 72 =~ ~0.5 for p ~ 0.4
and 7% ~ —0.6 for p ~ 0.5. Analysis of the series by Padé approximants and other
differential approximants gave results consistent with this observation. However, the
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- series are still too short to say anything other than that there is no evidence whatever
of a singularity on the positive real = axis for any value of p in the range 0.1 < p < 0.9,
and hence no evidence for a phase transition. A similar analysis for fixed p in the range
0.05 < p < 0.45 gives consistent results. That is, no evidence of a singularity on the
positive real T axis for any value of p in this range.

An analysis of the two-dimensional series, which are one term shorter, also shows
no evidence of a phase transition.

In order to further test our finding that the limiting model shows no evidence
of a phase transition, we used the actual series (4.1) and the known coefficients to
calculate p/x for various r~! at particular values of the density. The results given
in figure 2, although with apparent even—odd oscillation when 7 approaches its limit

of convergence 7 = 1, are again consistent with the conclusion that the susceptibility
only diverges at zero temperature,

2.0 2.0
- A {a) (h)
18] — B ' 18
| ¢
16/ — D 16
y - E
5 1.4 _g 1.4
1.2 1.2
1.01 1.0
0.8 - - - 0.8/

0.0 0.4 0.8 1.2 1.6 2.0 0.0 04 08 1.2 1.6 2.0

2.0 20
te) (d)

1.61 1.6
s ] el
$ 14 <14

1.2 1.2

1.07 1.01

0.8 0.8 y y -

0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0
! =1

Figure 2. p/fx, computed from the series for particular values of the density p,
versus 77}, {a}-(d) are the plets for p = 0.2, 0.4, 0.6 and 0.8. {A)-(E) show the
results expanded to order 72, 74, 78, 78 and 710,

Qur results are also consistent with the recent rigorous results for the Falicov-
Kimball mode] [26], which is simply a Hubbard model where only one spin species of
particle is allowed to hop. In the infinite-dimensional and I/ — oo limits, this model

does not, it seems, have a phase transition at a finite critical temperature for any
density.
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5. Discussion

1t is generally believed [11,27-29] that at low hole concentration the ground state of the
strongly correlated Hubbard model is ferromagnetic. There is no common agreement,
however, regarding the existence of a ferromagnetic state, or phase transition at a finite
temperature. In this paper, we have studied the strongly correlated Hubbard model in
the infinite-dimensionality limit using the method of high-temperature series analysis
and find no evidence for a magnetic phase transition at any hole density. Since critical
temperatures usually increase with increasing dimensionality, we conjecture that the
strongly correlated Hubbard model does not undergo a magnetic transition in any
dimension.

In order to check our results we have generated high-temperature expansions in
which only the dominant maximally extended polygons are taken into account. These
series behave in precisely the same way as the shorter exact expansions, as do cor-
responding exact high-temperature expansions for the related Falicov—Kimball model
which was shown recently [26] to have no magnetic transition in the infinite dimen-
sional and U — oo limits. These studies will be published elsewhere.

Finally we should point out that our results do not exclude more exotic types of
phase transitions of say the Kosterlitz—Thouless type where the magnetic susceptibility
is finite at non-zero temperature, but where correlations have a power-law decay below
a certain critical temperature,
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Appendix
Ca, Cﬁ’ CC’ Cd+ce, Cf’ Cg, C}l +CI +Cj7 Ck +Cr+ Cﬂ"l +Cn, Co, CP +Cq in table

3 were confirmed by exact enumeration.

Defining K (n) as the number of n-bond lattice animals on the d-dimensional
hypercubic lattice, and S4(n) as the number of n-bond lattice animals which extend
into d-dimensions on the d-dimensional hypercubic lattice, the following relation exists:

I{d(n’) Z (d d' rqud‘(n) (Al)

d'=1

From the known data for K (n) [30], we can solve 54(n) from (Al). It is readily seen
that

Cy=54(2) =4
C+C, =503) =

Cp+C;+C; = 5,(4) = 400
C,+C,+C,+C,+C, +C, = 5(5) =6912.

(A2)
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Table 3. The number of maximally extended connected graphs per lattice site Cq
of class o for movements up to 10 steps on hypercubic lattices. Cq for a = a; o =b
and ¢; & = d,e, f,5, a = h,i,...,q and @ = 7,9,..., A are counted on one-, two-,

three-, four- and five-dimensional hypercubic lattices respectively.

Typical , Typical . Typical
Graph Ca “ Graph o @ Graph Ca
e ! r ' 32 Fooe—e 1920
s .
*—e—s 4 l\. i
— 1
T |. § |. 640 G s 7680
-9 *r—s—o—0
| ——s—t—s
.
H ——e—eo—s 7680
! 8 t e 1920
*>— 880 'I A S
9 —p-—8 i
r—s—o—s 24 l
I +—o—e—s 3840
——r—s 24 v e 1920 \
| *—a—9—8
*—@ L ]
| J y 3840
——e 16 —a—se
| | | r—as—s—se
e ' —eo—o
L] —e—a—0 480
K s—e—s—s—e TGB0
T 16 LI}
»—o—e
'—T_‘ w . 1920
. | L e—e—s—s 51840
sS—o—o—4—s |
L L ]
' 192 r e—e—s 1920 -
.i_._. —e—s
- L M T—-v-—- 1920
—s—s
s—e—eo—es—s 102 v ——e 1920 ._|.
*—eo—so 192 o—l—o
! N e 480
*—o—s . |1/
*r—s—a
e a6 R 960 Il
*—8—q a8
| O L 960
1 96 * -
o—T—-. A *—e 320 l.ﬁl._.
! [
I\ P «—s 480
*—eo—o—eo 192 b l_l—o—o
f—y B s—ea—a—e 3840 l_l
r—e—o—e 768 e Q —e—e 3840
*—e—s C  e—e—se 1920 ) S
—- 48 +—o—s—s l_l
|
o-|¢—. D I-—--—O‘.“—. 1920 R +—o 47616
*—e *—e . .
-—t—e—ao 648 E ol—o—o—o 960 -
[ oe




Strongly correlated Hubbard model 1275

Table 4. The N coefficient of the number of maximally extended disconnecied
graphs per lattice site Cn of class & on an N-site hypercubic lattice lattice for
movements up to ten steps. Cy for a = (a2); a = (e,b),{s,¢) and (a®); a =
(a,d),{a,€),...,{a!) and & = (a,h),(2,i),..., (>} are counted on two-, three-, four-
and five-dimensional hypercubic lattices respectively.

Typical s rpical . i .
a G};‘[npl: Ca " ’1(:‘31-];11131: Ca @ ’I(;:yrln'phl u
{a®) ——s s—s -1 {a,h) T —s —800 (¢, ) T_. “*T —3840
._T{. e——ea 4—%
o 7 * (.f) ¢—¢ y—p —1800
(@9 Pl 1o ~9600 I_I IﬁI
* M *—a——9 |
| .
a,cr — ~2 ) — — -
" R I R R S 0 8 S
. «—e {_L|
( 3) s—e *—s 40 (a,k) g —-11520
’ e—s I—.{. I (a®,d) t ot 8900
(e, -T-—. —5780 T_° ¢
(a,d) —e  —25G [
-~ a—t + (ua,e) "—o—e—e 206880
(a,m) e—e¢ e—s 5760 *—e a—s
1
(a,e) e—e—o—s —768 '_I—' (a®, ) T—T T T 38400
) T—. -
(a,n) T—T——o—o —11520 )
{fa N a—a—= _aen b As_a aa
RO I O - e 29) 9— 34560
—s o—» (a,) T_"“r T _53760 (%, 9) I z I I
*—a—e o |}
(@e) q—e-p oy 708 ! oo
e {a,p) e ~3360 (a,8%) ::: ! 30240
(42 —e—a —432 ._T(. o o
R -9 La,0,cj T-T Ogr 43040
{a,q) 111 —51840 e .
b, . —288 - - *—
( l’-') L. ._I .!—o—'l (a,cz) T‘*T T_° 1320
{b.d) . —3840 e o—lo
(62) — — —48 *r—s—e @ -—e
IAI I—I (b,e) e—ea—ea—es —11520 (e ) 53760
———e a~, T -*—8 —_
(a?,b) L %) g g -l I :::
*—e *—e *—g -
by e—p ey —11320 ] (O e _
(az,c) T_T —s 672 .o I I I ’ IMI I I 23040
S i 11 —
(@YY e—e e—s 672 (e,d) . I:I -1280 | (ef) I I I I 16128
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Table 5. The zero field weight expansion coefficients of each connected graph defined
in (A4) for high-T expansion of the strongly correlated infinite dimensional Hubbard
model to order 710,

K
A 0 Ny
m=1 m=2 m=3 mo=4 =5 m=70 m=7 m=8 m=9
2 a 2 4
4 b 3 8 16
¢ 4 16 -64 16
6 d 4 24 120 96
€ 4 12 288 48
f 5 24 -24 -480 48
q 6 24 624 1584 -624 24
8 k 5 96 960 1632 768
i 5 32 2176 4352 256
H 5 16 3232 6464 128
k 6 32 256 -2720 -6784 128
! 6 32 -256 -2720  -6784 128
m 6 64 768 -3776 -4224 256
n 6 32 4672 -18848 2176 128
[ 7 32 -2048 -3136 20224 -5636 64
P 7 64 5760 -17920 27904 -2112 128
q 8 32 3840 38112 -77312 38112 -3840 32
0] r 6 480 9120 24480 23520 7680
s 6 120 17280 80040 64800 1920
14 6 40 32120 148320 128480 640
u i 40 16360 229280 65440 §40
v [i] 80 25120 102720 100480 1280
w 6 20 25840 304800 103360 320
z 7 40  -8200 -7E360 -102180 -105920 320
¥ 7 80 400 -19120 -119120 -99040 640
z 7 80 400 -19120 -119120 -99040 640
A 7 240 10800 -27600  -84720 -44640 1920
B 1 40 19760 -27080  -440560 -10400 320
(84 7 40 19760 -27080 -440560 -10400 320
D 7 40 47720 -74000 -598480 85120 320
E 7 80 56320 -107200 -423440 92000 540
F 7 80 24800 -17280  -365040 28960 640
G 8 40 -12160 -67360 41120 437240  -62080 160
H 8 40 -12160 -67360 41120 437240  -G2080 160
I 8 40 -12160 -G7360 41120 437240  -G2080 164
J 8 80 -7520 -1205G0 197200 242080  -67760 320
K 8 40 15800 -559480 1350320 -378160 -14320 160
L 9 40 -16120 151200 434240 -1499960 616680 -35600 80
M 8 80 31600 50560 -164240 564160  -28640 320
N B 160 33760 -128000 118400 271840 -7520 640
0 8 80 31600 80560  -164240 564160  -28640 320
P 8 80 87520 -1086080 2470240 -886160 66880 320
Q 9 80 23680 -555120 1717600 -2086480 432000 -23440 160
R 10 40 -20080 584320 -3520360 6247600 -3529360 584320 -20080 40
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It is easily seen that the following sum rules should be satisfied:

C%'+(%aﬂ :.N2

Cd’ + Ce + C(a,b) -+ C(GS) = Na

C}'FC%MC)=:C€Aﬂ

Ch + C, + Cj + C(a,d) + C(a’c) + C(b’) + C(a’,b) + C(aq) - N4

CJ: + C} + Cm + Cn + C(af) + C(b,c) + C(a’,c) = O;Na

Co + C(a,g) = C§16N2

Cp + C(ca) = CgN2/2'
Cr + C.s + Ct + C'u + Cu + Cw + C(a,h) + c(a,:') + C(a,j) + C(b,d') (A3)

+Cs.e) + Claz,a) + Clar,e) + Clapay + Crassy + Casy = N°
C;'+(%'+ca'+CL1*'Cb'+C%;+'Cb +(?E'+Ch?4‘C&mk)+'CkmD'+C%mm)

* Camyt Con t Cleay + Clee) + Clan gy + Clapy + Cas oy = CON?

CG' + CH + CI + CJ' + CK + C(a,o) + C(b.y) + C(a’,g) = CgiﬁNs

CL + C(a,q) = 045648N2

Cy+Cn+Co+Cp+Cypy+ Cle.gy + Clareny = C3CIN?

— b 2
Cg+C, = C316GIN,

Here CF, = n!/{n— m)lm!. (A2) and (A3) are consistent with the data in table 3 and
table 4.

The zero field weight W, for each connected graph in class a is given by the
following:

Ra—1
We= 3 Kipng'a—. (A4)
m=1

Where the values of n, and K for expansions to order of 71° are tabulated in table

5.
The finite field Gibbs free energy per lattice site for the Hubbard model in the
strong correlation and infinite-dimensional limit is the following:

1 1 r?
g(Bip1,p.t) = Eln(l -pr-p1)- 3o [2p1q +2mq]

17

-5 (87} q + 160F0 + 32p1p1 ¢ + 16p}y + 8530 ~ 12803¢” + 1631 ~ 19215, 4* + 16p,42

- 1281:)??2 + Spfqa + 8;p1q3]



S

1278 C J Thompson et al

1 78 5
-‘E a1 [192}314 + 283;1%!1 + 2409‘;’1 + 288p?p1q + 720p¥p1q + 720p1p€q + 288'p;p:iq + 2401)"2(;

+ 288p]q + 192p}q - 10752p}q% — 108565397 — 5760p3p, % + 19205347 - 29664p7p ¢
+ 4032p1p;¢° — 29664p; plg® ~ 5760p1p]¢° + 1920p%¢® — 10656p ¢? — 10752p} ¢*
+64512p3¢° - 10656p3¢° + 109440p%p  ¢* + 240p14° — 13824p;p;° + 109440p,p?4°
+240p1¢° ~ 10656p%¢° + 64512p7¢° - 10752p2¢* + 288p;4% — 11520p1p10* + 288p; ¢*
- 10752;7".1(34 + 192p1q5 + 192p}_q5}

1t [10368p7q + 13824p%q + 1075205 ¢ 4+ 122889 + 537T6ptq + 2150451

3 aut P P19 ot PIPLg 6piqa + pip)g

+ 21504p3p, q + 10752pp2q + 3072p}pq + 32256p7pYq + 10752p3 3 + 21504p1plq

+ 21504pyp}q + 12288p1p5g + 5376plq + 10752p}q + 13824pfq + 10368p|q

~ 1975296p%q° — 2231808p34* ~ 516096p3p, ¢ — 935424p}¢® - 3733552p}p,9°

+ 252672p3¢% — 4131840p3p q° — 1370112p3p} 4 — 430080p3p3 42 + 793?20;;?;; 192

~ 6429696p7p3q? ~ 1370112p}plq? + 798720p1pl¢% - 4131840pp? ¢ - 3735552p1p) 4

— 516096p1p}¢® + 252672p]¢% — 935424p]¢° — 2231808p}¢° ~ 1975296p%q?

+ 36518784p3¢° 4 20330496p}q” + 31481856pdp,¢° — 5763072p%4° + 69491712p3p 4

+ 107520000} p2 ¢ + 252672p2¢° ~ 1459660802 p, ¢° + 92694528p7p% ¢ 4+ 1075200053 p3 ¢*

+ 548352pyp, ¢° — 14596608p7p§ q° + 69491712;;,;3‘1.;3 + 31481856p,p‘1q3 + 252672pfq3

- 5763072p3¢° + 20330496p}¢° + 36518784p7q° — 126203904p} ¢* + 20330496p2¢*

~ 215126016p3p ¢* — 935424p%4* + 28354560pp) ¢* — 241704960p3p7¢* + 5376p;¢*

— 887808p;p;q* + 28354560p1p% ¢* — 215126016pp] g* + 5376p ¢* — 935424p7 g*

+ 20330496p}¢* - 1262039045 ¢* + 36518784p3q° ~ 2231808p3¢° + 422338567 p, ¢

+10752p1g® — 1993728p1p;¢® + 42233856p1p3 4> + 10752p)¢° — 2231808p}¢°

+ 36518784p) ¢° — 1975296p%4° + 13824p;¢° ~ 1462272pyp;4° + 13824p, ¢°

— 197529607 9" + 10368p1q” + 10368p,4” |
1 rlo
“ B 10!

[952320p§’q + 1190400p% q + 364000p§q + 1036800p7p g + 460800p%q

19 + 1382400035 1 + 69120002 p%q + 15
3

?p 19+ 161280p
+ 806400p}p, g + 1382400p% pl ¢ + 345600p)p}q + 1612800p3p7q + 921600p}p}q

+ 345600p%plq + 153600p3 plq + 1612800p3pjy + 1382400p3p)q + 691200p3p}q

+ 806400p1pq + 1382400p1p] ¢ + 1555200p;p5 4 + 1036800p1p]q + 161280p} 4

+ 460800p7q + 864000p] ¢ + 1190400p}q + 952320p¢ — 630128640734

~ 746688000p]¢% ~ 74649600p] p| ¢ ~ 403200000p3¢° - 969408000p7p, ¢

— 85938200p}¢% — 1187020800p3 p, ¢ ~ 200140800p}p3¢? - 774144005} p} 4>

+ 39352320p} ¢% ~ 597657600p pyq° — 1073894400p 347 — 251443200} p} g°

+ 1653120007 p g% — 137948160057 p3 2 ~ 571468300p3p}q° — 251443200p3p! ¢
~ 774144005} p3 0* + 251904000p2p3¢* — 1379481600p} p} 9% ~ 1073894400p} p} ¢*

~ 200140800p3p}¢? + 165312000p1p7 ¢ — 597657600p;p}¢% — 1187020800p1p} ¢°
~ 969408000p;p%¢° - 74649600p1p]¢° + 39352320p}¢> — 85939200p} ¢

- 403200000p% ¢* — 746688000p]¢° — 630128640p5¢° + 29023387360p] ¢°

+ 23422348800p%¢° + 14880153600p%p ¢* + 4591929600p%¢° + 51032140800p3 p; ¢°

A8y D
!

+ 1555200p 8005301 9
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+ 2399846400p7p}¢° — 2543846400p74” + 29611699200p% p ¢° + 34007347200p}p] ¢°

+ 5496422400p}p} ° + 165473280p7¢° — 9628915200p3p,° + 61582656000p7 p}q*

+ 17555558400p3 p} ¢° + 5496422400p3p]¢® + 540288000p5p; ¢° ~ 14184192000p% ] °
+ 61582656000p7p3¢° + 34007347200p% p} ¢* + 2399846400p3 p} ¢ + 540288000p1 7} ¢°
~ 9628915200pp{¢” + 29611699200pp}q” + §1032140800pp]¢° + 14880153600p; pf¢°
+165473280p7 ¢° — 2543846400p] ¢ + 4591929600p}¢° + 23422348800p% ¢°

+ 29023887360p] ¢° - 282321223680p5¢* — 93206284800p3¢* — 295217049600p3p ) ¢*

+ 32635699200p} ¢* - 370150579200p}p ¢* — 159938150400p]plq* - 2543846400p} ¢*
+ 92649984000p3p  4* — 5621878272005 p7¢* - 93826252800p3 5} ¢* + 39352320p]¢*

- 6076377600p3p ¢* + 117339648000p}p% ¢* ~ 562187827200p3 pl ¢* — 159938150400p3p} ¢*
+ 87398400p;p ¢* — 6076377600p1p}q* + 92649984000p; plq? — 370150579200p ;7] ¢*

- 295217049600 p3¢* + 39352320p3 ¢* - 2543846400p7¢* + 326356992005} ¢*

— 93206284800p} ¢* - 282321223680p%¢* + 692866560000p7¢° — 93206284800p} ¢°

+ 1120164249600p7p,¢* + 4591929600p3¢° — 116132390400p1p(9° + 1250784460800p7p? ¢°
— 85939200p}¢° + 3083808000p3p | ¢° — 124850380800p7p3¢° + 1250784460800p2p} ¢*
+ 161280p1¢° — 15974400p;p,¢° + 30838080001 plq® — 116132390400p; 1% ¢°

+ 1120164249600pp} ¢° + 161280p,¢° — 85939200p}¢° + 4591929600p]¢°

— 93206284800p} ¢° + 692866560000p}¢° ~ 282321223680p}¢° + 234223488005 ¢°

— 342130176000p7p¢° — 403200000p3¢° + 22008844800p3 p ¢® - 319876300800p% p3 ¢°
+ 460800p1¢® — 256281600p1p, ¢® + 22008844800p 1p34° — 342130176000p; p} ¢

+ 460800p,¢° — 403200000p3 ¢° + 23422348800p7¢® — 282321223680p) ¢°

+ 29023887360p3¢" — 746688000p3¢" + 22776422400p}p | ¢” + 864000p;¢”

- 451276800p1pyq” + 22775422400p,pfq7 + 864000p, " - 746688000p7 9"

+ 2902388736054 ~ 630128640p3 ¢* + 1190400p;¢° — 3041280007, ¢°

+ 1150400p g% — 630128640p%¢® + 952320p;¢° + 952320,;”9] + O(?). (A5)

The parameters 3, Pt Py Pr 4, £, T are defined in the text.
When the external magnetic field » = 0, Py =pand p| = p and (A3) becomes
_ 1 4 72 l Tt 2 2
9(B:p 1) = SIn(1~2p) = 2 ompe - 2 1rpa(64p+ 160 432 ~ 4480 + 168)

1 ]
-3 # pe(1920p% + 1152p° + 384p* 4 7872pq — 80640p%q — 33024p% ¢ + 4804% - 35136p¢?

+ 347904p%¢® + 576¢% ~ 33024pg® + 384¢*)
1 B
-5 31:_41 pq(ssolsp3 + 86016p* + 55296p° + 207365° + 2102784p%; ~ 16564224p° g — 14674944p%y
~ 5412864p°q + 1053696pg? — 40719360p%¢? + 272338944p%% + 157506280p'¢? + 10752¢°
- 2758656pg° -+ 97370112p%g° — 924364800p°¢° + 215044% — 6457344pg* + 157505280p% ¢*
+ 276484° - 5412864p¢® + 207364°)

10

1
-3 1—1;}-'5—'pq(5160960p4 + 7372800p° + 6912000p° + 4761600p" + 1904640p° + 661232640p°

~ 4126156800p ¢ — 5899699200p%¢ — 43353600005% 1564385280p" ¢ + 1411522560p2¢2
~ 38529715200p" ¢ + 191572569600p%¢? + 234479232000p%¢2 + 103600619520p8 42
+ 166103040pg® ~ 17240448000p%¢° + 367911014400p°¢° — 2051089382400p*>
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— 1568779100160p°¢> + 322560¢* — 187852800pq* + 15351475200p%¢*

— 543527731200p%¢* + 6127630540800p 3% + 9216004° — 1062681600pg”

+ 90862387200p%¢® — 15687T9100160p%° + 17280004 — 1944652800p4°

+ 103800619520p%¢® + 2380800¢° — 1564385280pg° + 1904640:;3) + O(r12). (A5)
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