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Abstract. High-temperature expansions for the strongly correlated Hubbard model 
in the limit of infinite spatial dimension d - CO, with hopping scaled by d - ' / * ,  are 
developed for the Gibbs free energy and susceptibility to order T-'' for arbitrary 
values of the density. From Pad6 and other analysis we find no evidence of a phase 
transition at a finite critical temperature for a n y  value of the density. 

1. Introduction 

The Hubhard model [I] has attracted much interest over the years as a possible model 
of itinerant ferromagnetism [2-41, and, more recently, in connection with theories of 
high-temperature superconductivity [5-71. The model is described by the Hamiltonian 

N N w=--1c (a f , , a j , ,+a j , , a i ,~ )+uCni , ,n i , l - -hC(" i , t -n i . , )  (1.1) 
( i j )  o=?, l  i = l  i = 1  

where (ij) denotes nearest-neighbour lattice sites, ai,o (a!,o) is the annihilation (cre- 
ation) operator for an electron on site i with spin a =t, 1 and ni,o = a?,,,ai,o is the 
corresponding number operator. The first term in (1.1) represents the kinetic energy, 
with nearest-neighbour hopping energy t ,  the second term represents a n  on-site repnl- 
sion with energy U ,  and the last term represents the interaction of the electron's spin 
with an external magnetic field h. 

In spite of much work, there are very few rigorous results for the Hubbard model. 
Certain ground state properties are known exactly for the one-dimensional model 
[8-101 and in higher dimensions it is known [11,12] that (l.l), with the number of 
electrons equal to N - 1, has a ferromagnetic ground state. On the basis of these re- 
sults, and various approximate methods, such as the Hartree-Fock [13] and Gutzwiller 
variational [14] methods, it is widely believed that the Hubbard model (1.1) has a fer- 
romagnetic ground state, a t  least near half-filling density. There are no rigorous results 
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and there is no common agreement, however, regarding the existence of a ferromag- 
netic state, or phase transition, a t  a finite temperature. 

The method of high-temperature series expansions, which has proved so successful 
in the study of critical phenomena in classical lattice systems [15], has  been applied to 
the Hubbard model, but so far with limited success and inconclusive and contradictory 
results. Plischke [16] for example, did not take proper account of the anti-commutation 
properties of the Fermi operators, while the series of Brauneck [17], Kubo [18] and 
Kubo and Tada [19], which corrected this error, were too short and too irregular for 
reliable conclusions to be reached. The series of Kubo [18] were also observed to 
contain errors [20]. 

Our purpose here is to report on further series work for the strongly correlated 
Hubbard model in which C l  - M, i.e. double occupancy of sites by electrons of either 
spin is prohibited. In this limit, the Hamiltonian (1.1) is replaced by [21] 

C J Thompson et a/ 

N 

= -2 ( E ! , , , E ~ , ~  + E ~ , ~ c ~ , ~ )  - h (rzi,t - ni,J (1.2) 
l i J l o = t , l  i=1  

where 

and the problem is to compute the grand canonical partition function 

Z - lim Tr {exp [-P (a - /IN)]] 
- U-m 

where r = Pt,  

and the operator 

N 

projects out doubly occupied states in the trace, taken over all states, in (1.4). 
In the following section, we formulate the general problem of generating high- 

temperature expansions, in power of r ,  for the free energy and magnetic susceptibility 
for the strongly correlated model. As a check on our procedure, we recalculated the 
square lattice series to order r8 and found agreement with Kuho and Tada. 
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Instead of further reproduction and extension of existing series in two and three 
dimensions we concentrated our attention on the infinite-dimensional limit of the 
strongly correlated model. In order t o  obtain non-trivial results we need to rescale 
the bopping term by d-'I2 before taking the limit of lattice dimensionality d -* 00 

[22]. In the high-temperature series expansions for this limiting model, only maximally 
extended graphs contribute, so that the complexity of the problem is considerably re- 
duced. Indeed, some exact results are known for this limiting model [23,24], and there 
is some hope of an exact mean-field-type solution. 

We found, however, that due mainly to the anti-commutativity of the Fermi OP- 

erators, the generation of high-temperature series expansions for even this simplest 
limiting Hubbard model was still extremely complicated, and that as a result, com- 
puter time limitations restricted us to generating series only np to order 7". 

As in the finite-dimensional case, the series we obtained were quite irregular and 
difficult to analyse by simple extrapolation techniques. A simple plot of the suscepti- 
bility x-' computed from the series, against T- ' ,  however, leads us to believe that the 
limiting model does not have a phase transition at  a finite temperature. This conclu- 
sion is supported by Pad6 analysis [25] and other analyses and is consistent with recent 
rigorous results [26] for the related Falicov-Kimball model in the infinite-dimensional 
limit. 

Finally, as a check on the validity of our reciprocal susceptibility plot, we repeated 
the calculation for our square lattice series and reached the expected conclusion that 
the strongly correlated twedimensional model does not have a phase transition. 

As conventional wisdom dictated that phase transitions become more likely with 
increasing dimension, we conjecture that the strongly correlated Hubbard model does 
not have a phase transition at  a finite temperature in any dimension and for any 
density. 

2. H i g h - t e m p e r a t u r e  expansions 

The simplest and most straightforward way to generate high-temperature expansions 
is to expand the exponential in (1.4) in powers of r = Pt, to obtain 

where the 'unperturbed' grand-canonical partition function Zo is given by 

and the expectation value in (2.1) with respect t o  the unperturbed system is defined 
by 

(2.3) 

In order to evaluate the expectation value appearing in (2.1) we expand the sum 
raised to the power n and associate with each term i&& a 'particle' with spin 
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U moving from site j to a nearest-neighbour site i. In this way, every term in the 
expanded sum is uniquely associated with an n-step movement of some number of 
particles on the lattice. 

C J Thompson et a1 

For example, when n = 4,  the terms 

irt 1,Ta4,Ta3,ta2,1 - - t  - '4,Ta3,Tiri,Tir1,T - t  - (2.4) 

(2.5) 
-t  - - t  ~ 

~ ~ , ~ i r ~ , l i r ~ , ~ i r 3 , 1 a ~ , T a l , t a ~ , ~ ~ Z , T  

and 

a3,1a4,1a4,1a3,1 - t  - -t - 6' l,TaZ,TaZ,Tal,t - - t  - (2.6) 

are associated with the movements shown in figures l ( a ) ,  (b)  and ( c )  respectively. 
Notice that, in general, from (2.3), the only movements which contribute to the 

expectation value in (2.1) are those with the same initial and final particle configu- 
rations which have no intermediate doubly occupied sites. The situations shown in 
figure 1 are examples of such allowed movements. ~ g g ~ ~ ~  

( a )  
8 2  1 2  1 2  8 2  1 2  

( I )  (2)  ( 3 )  (4) ( 0 )  

( a )  $ o g _ o & L L  
1 2  2 > 2  1 2  8 ,  

( 0 )  ( 1 1  (2)  (3)  (4) 

6-0 G a a &  
( e )  

o c + @ G Q G Q c t r o  
I I  I 1  1 2  1 2  1 2  

IO) ( 1 )  ( 2 )  ( 3 )  (4) 

Figure 1. Graphical representation of the t e m  (2.4), (2.5) and (2.6). @ and 0 
denote the sites occupied by a spin up and spin down particle respectively and 0 
denotes an unoccupied site. The find configuration (4)  is reached from the initial 
confiyration (0) through three intermediate partide movements. 

To find the expectation value or weight of each allowed movement, we first use the 
Fermi anti-commutation relations to group together the operators which act on the 
same lattice site. The sign of the weight is then easily seen to be plus (minus) if the 
total number of required commutations or transpositions is even (odd). Finally, i t  is 
easily checked that the magnitude of the weight is the product of the weights per site 
which are equal to 

p, = Zo (1 + ZT + ZJ1 

q = 1 - p T  -PI = (1 + Z T  +zl) 

(2.7) 

if the annihilation operator for spin U is to the right of the creation operator for spin 
state U at  that site, and equal to 

(2.8) 
-1  
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if the creation operator is to the right of the  annihilation operator. 
For example, the weight of the terms (2 .4) ,  (2.5) and (2.6) are respectively -pTq , 

p , p I q  and p,pI9*. In general, the magnitude of a weight is easily seen to be the 
product of a p,, to the power of the number of spin U particles in the corresponding 
movement and q to the power of the number of holes. The sign of the weight, however, 
must, in general, be determined by actually performing the commutations as described 
above. An exception is the case where the particles move on a polygon, such as the 
>qu*,c 1" ,,gu,c ' ( U j .  111 l Y C l l  c. crwc, C L l C  >I&" ,s prua (r,r,,,uoj ,"I ,,,""C,,,C,,b~ L""""Y'6 

an odd (even) number of particles. 
Many particle movements can, of course, take place on underlying bare graphs, 

such as the square, chain of length 2 and disconnected bonds in figure 1,m that in order 
to calculate the total Contribution arising from a given graph, one must multiply the 
number of ways of embedding the bare graph in the lattice by the sum of the number of 

on the graph multiplied by their respective weights. 
For example, there are 6N ways of embedding a chain of length 2 in  the square 

lattice of N sites, four allowed ways of moving one particle, with spin up or spin down, 
and four allowed ways of moving two particles, with spins independently up or down, 
giving rise to a total contribution of 

2 2  

:.. C" .._^ I / ^ \  r.. .̂.̂L " Î̂  ̂ 'L- -:-- :- _,__^ ,-: -..-, "1" :".,,.l.,;"" 

-11 _..- d ---+;nln mrn.am-n+r C,.- - . 4 . v 0 -  _.._he- ,.Con:-. ,.- In. d -mn - m & i # I a ~  
a L L " I I . z "  yalY 'c1c ..I""C.llCll"D I", * 6 1 " C L l  . I " L , I " C I  "L op,,, "p "U","' "Y.'L ""I..L pU.".".-" 

6 N x 4 x  { ~ t 9 ~ + ~ 1 9 ~ + ~ f 9 + 2 ~ ~ ~ 1 9 + ~ 2 9 } .  (2 .9)  

On the other hand, there are N(N - 7) ways of embedding two disconnected bonds 
on the square lattice, six ways of assigning four nearest-neighhour labels to the two 
bonds and independently one particle of either spin and two movements on each bond 
giving a total contribution of 

N ( N  - 7) x 6 x ( 2 q q  + 2 ~ ~ 9 ) ' .  (2 .10)  

In general, the weight of a disconnected graph can be obtained from the weight of 
its component graphs. Thus if a disconnected graph G,, is composed of two subgraphs 
G, and G, (which may he connected or disconnected), the weight of an N,,-step 
movement on G,, is given by 

(2 .11)  

where W,, ( N o )  (W, (N,)) denotes the weight of an No (N,)-step movement on G, 

Ultimately one is interested in calculating the Gibbs free energy per lattice site in 
(Gk), 

the thermodynamic limit, i.e. from (2 .1) ,  ( 2 . 2 ) ,  ( 2 . 7 )  and (2 .8)  

where g, ( p t  , p i )  is equal to the coefficient of N in the expectation value appearing in 
the sum on the right-hand side of (2.1). From the above remarks and ( 2 . 8 ) ,  gn ( p T , p L )  
is a multinomial of degree n in pt and p l .  
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In zero field h = 0, zt = z, = z ,  pt = p, = p and q = 1 - 2p, and (2.12) can then 
be expressed in the form 

m Tnn-2  

n=2 ,=o 
g ( p , p , r ) = p - ' l n ( l - 2 p ) - p - ' p ( l - 2 p ) x I x a ! " ) p i  (2.13) 

n. 

where in re-expressing the second term in (2.12), we have made use of the fact that  
each contributing graph must have at least one particle and one hole. 

Using the convention ay)  = 0 for i < 0 and i > n - 2, the particle density in zero 
field is given from (2.13) by 

(2.14) 

where 

O,!.)=(i+l,[aI"'-2.!l',]. (2.15) 

Similarly, from (2.12) the zero-field susceptibility can be written as 

(2.16) 

and the zero-field specific heat as 

(2.17) 

where k is Boltzmann's constant. 

(2.16) and (2.17) as polynomials in the density p so that we can write 
The series (2.14) can also be 'reverted' to re-express the coefficients of T" in (2.13), 

and 

We note in passing that after transforming to operators 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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the susceptibility series can also be generated from the zero-field fluctuation relation 

n! 
n=2 ,#j 

(2.22) 

where the spin operators S? and S; denote respectively c&ciL and cflcjr and the 
subscript N means that we only retain the term proportional to N in the unperturbed 
expectation value. In this formulation, it is easily proved that the only non-vanishing 
terms arise from particle movements in which at least two of the particles exchange 
their positions. In other words, only the particle movements from two or more particles 
contribute to x. The general requirement that  there is at  least one bole leads to the 
form of (2.16). 

3. The infinite-dimensional limit 

In order to study the high-density limit we need to scale the hopping energy by d-'/' 
before taking the limit of lattice dimensionality d to infinity. Thus if we consider 
for simplicity d-dimensional hypercuhic lattices, only terms with n even contribute in 
(2.1), and we obtain 

Since movements of particles which contribute to (3.1) must return configurations 
to their initial state, it is clear that %-step movements can extend into at  most n 
dimensions. If such movements extend into m of the available d > m dimensions, it 
follows that the total number of these movements is d!/(d - m)!m! times the number 
of allowed 2n-step movements in an m-dimensional subspace. These movements then 
contribute a factor of order dm-"/m! for large d and it follows that the only 2n-step 
movements which contribute in the limit d -+ cc are those which extend fully into n 
dimensions. 

By analogy with (2.12) the Gibbs free energy in the infinite-dimensional limit can 
thus be expressed in the form 

where gZn (pT,pl) is now the coefficient of N of terms in the expectation value ap- 
pearing in the sum over n in (3.1) which arise from particle movements of 2n steps on 
bare graphs which extend fully into n dimensions. The expansions of g, x, C, and p 
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in parameter p in the infinite-dimensional limit are the following: 

C J Thompson el Q I  

tion (3.3) can also be expanded in electron density p as tk following: 

(3.3) 

The expansion coefficients in (3.3) and (3.4) are tabulated in table 1 and table 2. 

calculate 
So while the complexity of the problem is considerably reduced we still need to 

(i) the number of embeddings of maximally extended bare graphs; 
(ii) the number of possible particle movements on such graphs; 
(iii) the sign and magnitude of the weights corresponding to the allowed move- 

ments. 
Connected and disconnected graphs contribute but in the latter case we only re- 

quire the appropriate lattice constants, i.e. the coefficients of N in the number of 
embeddings. These are given up t o  order ten in tables 3 and 4 of the appendix. 

Fortunately, the requirement that 2n-step movements must extend into n dimen- 
sions, and return the configuration to its initial state, drastically reduces the number 
of allowed graphs. Thus the relevant graphs for n = 4, for example, can be conve- 
niently classified into 10 classes and for n = 5 into 27 classes. Moreover, if the edges 
of a graph which are part of a loop are labelled '1-edges' and the other edges are 
labelled as '2-edges', the label of an edge is equal to the number of times a particle 
must traverse that edge in an allowed movement on the graph. It follows that by 
keeping track of movements on edges, we can discard those movements for which any 
given edge label is exceeded. This, of course, reduces the enumeration problem con- 
siderably. The aforementioned considerations for calculating the weights associated 
with an allowed movement apply here also and the results are given in table 5 of the 
appendix. 
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The main results, in table 1, give the coefficients in the high-temperature expansion 
for the Gibhs free energy, the zero field susceptibility, specific heat, and density ag 
functions of the parameter p defined in (3.3). Coefficients of the corresponding series 
(3.4) expressed in terms of the density are given in table 2. 

4. Numerical  analysis 

We begin by re-expressing the susceptibility and specific heat series (3.4) in the form 

m m 

C ( p , r )  = k x v , ( p ) r 2 "  = k x V , ( p ) r 2 "  
"=l n=1 

where uo(p) = 2p, U&) = p ,  Ul(p) = 0 and 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

$lzn) is defined as the following 

and the coefficients b{2"), c,""', D{'") , Bi (2n) and e2") are given in table 1 and table 
2. 

I t  will be noted from the table that for a fixed density p ,  the series coefficients Un(p) 
and V,,(p) have irregular signs so that a straightforward ratio test is inappropriate. 

For p t 0.4, the susceptibility series alternate in sign, as do the specific heat 
series for p 2 0.5. This sign pattern is consistent with a dominant singularity on the 
negative real r2 axis (i.e. with an imaginary temperature) at  T~ N -0.5 for p Y 0.4 
and r2 N -0.6 for p Y 0.5. Analysis of the series by Pad4 approximants and other 
differential approximants gave results consistent with this observation. However, the 
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series are still too short to say anything other than that there is no evidence whatever 
of a singularity on the positive real T axis for any value of p in the range 0.1 5 p 5 0.9, 
and hence no evidence for a phase transition. A similar analysis for fixed p in the range 
0.05 5 p 5 0.45 gives consistent results. That  is, no evidence of a singularity on the 
positive real r axis for any value of p in this range. 

An analysis of the two-dimensional series, which are one term shorter, also shows 
no evidence of a phase transition. 

In order to further test our finding that the limiting model shows no evidence 
of a phase transition, we used the actual series (4.1) and the known coefficients to 
calculate p / x  for various T-' at particular values of the density. The results given 
in figure 2, although with apparent even-odd oscillation when T approaches its limit 
of convergence T = 1, are again consistent with the conclusion that the stisceptihility 

C J Thompson el a1 

1.8- 

1.6- 

2 1.4- 

1.2- 

1 .o. 

only diverges a t  zero temperature. 

0.0 0.4 0.8 1.2 1 .6  2.0 
7-1 

2.0 I (cl n 
/ I  

71). 

0.81 
0.0 0.4 0 .8  1.2 1.6 ~ 

1.2 

1 .o 

0 

0.8' I 0.84 
0.0 0.4 0.8 1.2 1 .6  2.0 0.0 0.4 0.8 1.2 1.6 2.0 

7-1 7-1 

Figure 2. PIX, computed from the series for particular values of the density p ,  
YWUS T-'. (a)-(d) are the plots for p = 0.2, 0.4, 0.6 and 0.8. (A)-(E) show the 
results expanded to order P ,  Y', re, 7' and do, 

Our results are also consistent with the recent rigorous results for the Falicov- 
Kimball model 1261, which is simply a Hubbard model where only one spin species of 
particle is allowed to hop. In the infinite-dimensional and U i 00 limits, this model 
does not, i t  seems, have a phase transition at  a finite critical temperature Cor any 
density. 



Strongly correlated Hubbard model 1273 

5. Discussion 

It  is generally believed [ll,  27-29] that at  low hole concentration the ground state of the 
strongly correlated Hubbard model is ferromagnetic. There is no common agreement, 
however, regarding the existence of a ferromagnetic state, or phase transition at a finite 
temperature. In this paper, we have studied the strongly correlated Hubbard model in 
the infinite-dimensionality limit using the method of high-temperature series analysis 
and find no evidence for a magnetic phase transition at any hole density. Since critical 
temperatures usually increase with increasing dimensionality, we conjecture that the 
strongly correlated Hubbard model does not undergo a magnetic transition in any 
dimension. 

In order to check our results we have generated high-temperature expansions in 
which only the dominant maximally extended polygons are taken into account. These 
series behave in precisely the same way as the shorter exact expansions, as do cor- 
responding exact high-temperature expansions for the related Falicov-Kimball model 
which was shown recently [26] to have no magnetic transition in the infinite dimen- 
sional and U - 00 limits. These studies will be published elsewhere. 

Finally we should point out that our results do not exclude more exotic types of 
phase transitions of say the Kosterlitz-Thouless type where the magnetic susceptibility 
is finite at non-zero temperature, but where correlations have a power-law decay below 
a certain critical temperature. 
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Appendix 

C,, C,, C,, Cd + C,, C,, C g ,  C, + Ci +Ci, C, +C, + C,,, + C,,, CO, Cp +Cp in table 
3 were confirmed by exact enumeration. 

Defining K d ( n )  as the number of n-bond lattice animals on the d-dimensional 
hypercubic lattice, and S,(n) as the number of n-bond lattice animals which extend 
into d-dimensions on the d-dimensional hypercubic lattice, the following relation exists: 

From the known data for Ifd(n) [30], we can solve Sd(n) from (Al). I t  is readily seen 
that 

c, = S,(2) = 4 

Cd + C, = S3(3) = 32 

C,, + C, + Cj = S4(4) = 400 

C, + C, + C, + C, + C, + C, = S,(5) = 6912. 

(A21 
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Table 9. The number of maximally extended connected graphs per lattice site C, 
of clase CL for movements up to 10 steps on hypercubic lattices. C,, for e = a; oI = b 
and c; c( = d,e,f ,s;  cI = h.i ,..., q and a = 7 .8  ,..., R are counted on one. twe.  
three-. four- and five-dimensional hypercubic lattices respectively. 

Typicid 
Graph n c:, 

0 .-. 1 

b .-.-a 4 

c .-. 1 
I I  .-. 

d 8 
I 

.-1-. 

e .-.-.-. 24 

f .-.-. 24 
I I  

I I  

.-. 
g .-.-. 10 .-.-. 

i .-.-. 
I . .-.-. I 

I 

.-.-.-1-. .-.-. .-.-. I I  

.-.-. 
I I  .-.-. .-. .-.-. I /  
I 

I 1  

I I  

/ I  

. - . - . - . .-. . - . - . - . .-.-. .-. .-.-. .-. I /  

I I 
.-.-.-. .-.-.-. 

16 

192 

192 

192 

00 

90 

192 

768 

48 

648 

t 

U 

" 

w 

c 

U 

A 

B 

C 

D 

E 

l 
I \  

.-.-. .. 
i .-.-.-. . 

I 
I 
.-.-.-. 
i 
i .-.-. 
I 

.-.-.-. . .  / I  

I .-.-.-.-. .-.-. .-.-. I I  

.-.-. 
/ I  

I 

1 1  
I 

.-.-. 

.-.-. .-.-. 

.-. .-.-. I I  
I \  .. .-.-.-. .-.-. I I  

1-.-. 
, I  

32 

640 

1020 

1920 

480 

1020 

1920 

1920 

960 

320 

3840 

1920 
/ I  .-.-.-. 

1-.-.-.-. 1020 
/ I  .-. 
e-.-.-. 900 .-. 

Typical 
Graph CO 

F 

G 

H 

I 

J 

I< 

L 

nr 

N 

0 

P 

Q 

R 

.-. 1920 
I I  

I 

I I  

I 1  
l 

I 1  

. - . - . - . 

.-.-.-. 7080 . - . - . - . .-.-.-. 7080 .-.-. 
.-.-.-. 3840 .-.-.-. 

3840 i .-.-.-. .-.-. I I  

I I  
.-.-.-.-. 7680 .-.-. .-.-.-. 
I I  
i i  .-.-. .-.-. .-.-. .-. I I  

I I  .-. . .-.-. .-. I I /  
I I  .-. .-.-. / I  
I I  .-.-. .-. . - . - . - . .-. I I  

I /  .-.-. .-.-.-. .-. I I  
I I  

I I 
.-.-.-. 
i i .-.-.-. 

51840 

1920 

480 

960 

460 

3840 

47G10 



Strongly correlated Hubbard model 1275 

Table 4. The N coefficient of the number of maximally extended disconnected 
graphs per lattice site C, of class a on an N-site hypercubic lattia lattice for 
movements up to ten steps. C, for a = (az); a = ( a , b ) , ( a , c )  and (a3); a = 
( o , d ) ,  (a, e), . . .,(a') and a = (a. h) ,  ( a ,  i ) .  . . . , (a5) are counted on tw-, three, four- 
and fivedimensional hypercubic lattiae respectively. 

~~ 

( " 2 )  .-. .-. -.I 

( a . 6 )  1 1 - i 2  . .-. 
1-1 -24 . .-. 

(03) .-. .-. 40 .-. 

( a , . )  .-.-e-. -786 .-. 
-"en 9,;) -<"" 1 1 -  .-. .-. 

( " , 9 )  1-a-1 1 -788 .-.-. . 
(aZ) .-a-. -432 .-.-. 

(Q,cJ  1 1-1 -288 .-. .-. 
1-7 1-1 -46 .-. .-. 

(a2.b) 1 .-e 1726 .-. .-. 
(a',.) 1-1 .-a 672 .-. .-. 
( a ' )  .-a .-a -672 .-. .-. 

1 .-. ( , l . l b )  .-.-. 
I 

-0800 
(''.') T .-* .-.-. 
i e , j )  !-*-:-: -9800 

( a , & )  1-1-. 1 -11520 

( 0 . 1 )  1-7-a -5780 

.-.-• . 

.-. .-. 
I 

( a , m )  1-1 .-. -5780 .-.-. 
I 

(a,.) 1-1-.-. -11520 --- _ - - -  
( e , ~ )  1-s-r I -53760 .-.-. . 

I 

( a , p )  1-1 *-a -3380 .-.-. 
1-1 

i i  
( Q , O )  1-0-1 1 -51640 

.-.-. 
1 *-! -3840 

(Q.4 .-.-. 
( & . e )  .-.-e-. -11520 .-.-. 
(6 , f )  ~ - 1 - a  -14400 

( 6 . 9 )  1-1 *-I -11520 

.-. .-. 
I !  .-. 

( c , d )  1-1 -1280 .-. .-. 
1 

. 

1-1 1 T -23040 .-. . . .-. 
( 0 7  16128 I ! ! !  .-. 
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2 u  

Table 5. The zero field weight expamion coefficients of each conn&ted graph defined 
in (A4) for high-T expansion of the strongly correlated infinite dimensional Hubbard 
model to order do. 

2 4 

4 b 3  E 16 
c 4  16 -64 16 

6 d 4  24 120 96 
e 4  12 266 46 

9 6  24 -624 1584 -624 24 
f 5  24 -24 -480 48 

S h 5  96 960 1632 768 
i 5  32 2176 4352 256 
3 5  16 3232 6464 126 
l i 6  32 -256 -2720 -6764 126 
1 6  32 -256 -2720 -6784 126 

m 6  64 766 -3776 -4224 256 
n 6 32 4672 -18848 2 l i 6  126 
0 7  32 -2048 -3136 20224 -5536 64 
P I  64 5760 -17920 27904 -2112 126 
U 8  32 -3840 36112 -71312 38112 -3640 32 

10 r 6 480 9120 24480 23520 7680 
s 6  120 17280 60040 64600 1920 
1 6  40 32120 148320 128480 640 
" 6  40 16360 229260 65440 640 
" 0  EO 25120 102720 100480 1260 
u 6  20 25840 304600 103360 320 
z 7  40 -8200 -71360 -102160 -105920 320 
Y 7  60 400 -19120 -1191?0 -99040 640 
r 7  EO 400 -19120 -119120 -99040 640 
A I  240 10800 -27600 -84720 -44640 1920 

c 7  40 19760 -21060 -440560 -10400 320 
D 7  40 47720 -74000 -596460 85120 320 
E 7  60 56320 -101200 -423410 92000 640 
F 7  EO 24600 -17280 -365040 26960 040 
G 6  40 -12100 -67360 41120 437240 -62060 I60 
H E  40 -12160 -67360 41120 437240 -62080 160 
1 8  40 -12160 -67360 41120 431240 -62060 160 
J 6  60 -7520 -120560 197200 242060 -67760 320 
IC 6 40 15800 -559480 1359320 -376160 -14320 IF0 
L 9  40 -16120 151200 434240 -1499960 616680 -35000 60 
M E 60 31600 80560 -164240 564160 -26640 320 
N B  160 33760 -128000 116400 271840 -7520 640 
0 6  80 31600 80500 -164240 564100 -26040 320 
P 6  80 87520 -1086060 2470240 -866100 66660 320 
Q Q  80 23660 -555120 1717000 -2066460 432000 -23440 160 

R 10 40 -20080 584320 -3529360 6247600 -3529360 584320 -20080 40 

B 7  40 1 m a  -27oaa -440560 -1a400 $20 
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It is easily seen that the following sum rules should be satisfied: 

Where the values of n, and I&) for expansions to order of TI'' are tabulated in table 
5. 

The finite field Gibbs free energy per lattice site for the Hubbard model in the 
strong correlation and infinite-dimensional limit is the following: 

1 1 7 2  

io s(P,Pt.Pl,t) = -w- P, -PI) - p -- 2!1! [ 2 p , q  + z p 1 q ]  

1 T' 
4!2! [ 8 p f q  + 16p;q + 3 2 p y p l q  + 16p;q + 8p;q - 128p;q' + 16ptq' - 192prp1q' + 16plq' 

- 12SP~q' + 8prq3 + 8 ~ 1 q ' ]  
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1 9 
0 6!3! [192P;9 + 288P;q + 24OP;q + 288p;plq + 720p;plq + 720pyp;q + 288ptp;q + 240p;q 

_-- 

+ 288pfq + 192P;q - 1 0 7 5 2 ~ ; ~ ~  - 10656piq2 - 5760pfplq2 + 19204q2 - 29664p~p1q2 

+ 403~PtPlr12 - 29664~yp;q' - 5760ptpiq2 + 1920p;q2 - 10656p1q2 - 10752p;q' 

+ 64512P,3q3 - lM56P;q3 + 109440p?plq3 + 240pyq3 - 13824p,plq3 + 109440plp~q3 

+ 24Dpid - 10656p7q3 + 64512p;q3 - 10752p;q' + 288ptq' - 11520ptp1q' + 288p1q4 

- 10752p?q' + 192p:q5 + 192pLq5] 
1 9 
p 8!4! [10368P;q + 1 3 8 2 4 ~ ; ~  + 10752p;q + 12288p;plq + 5376p;q + 2 1 5 0 4 ~ ; ~ ~ ~  _-_ 

+ 21m4P;Plrl + 10752P;P;q + 3072P;P;q + 32256p;p;q + 10752p';pfq + 215Mptpfq 

+ 21m4pyp;q + 12288pypfp + 5376ptq + 10752p~q + 13824pyq + 10368piq 

- 1 9 7 5 2 9 6 ~ ; ~ ~  - 2231808p;q2 - 516096p;plq2 - 935424p;q' - 3735552p;plq2 

2 3 2 2  + 252672p;q2 - 413184Op;plq - 1370112pIplq - 430080p;p;q2 + 798720p~p1q2 

- 6429696~yplq - 1370112p;p;q2 + 798720ptp;q2 - 4131S40ptp~q2 - 3735552ptp;q2 

- 516096pyp;q2 + 2526np;q' - 935424p;q' - 2231808p;q2 - 1975296p7q2 

+ 36518784p;q3 + 20330496p:q3 + 31481856p:p1q3 - 5763072p:q3 + 69491712p~plq3 

+ 10752000P;P~q3 + 252672~79' - 14596608p;piq3 + 92694528p;p;q3 + 10752W0p;p~q3 

f 548352P~Plq' - 1459ffi08ptp~q3 + 6 9 4 9 1 7 1 2 p ~ p ~ q ~  + 31481856ptpiq3 + 252672p;q3 

- 57"J72p1q3 + 2033M96p;q3 + 365i8784p;q3 - 126203904p;q4 + 20330496p;q4 

- 215126016p;plq' - 935424p;q' + 2835456Op;plq' - 241704960p;p;q' + 5376ptq' 

- 887808ptp1q' + 28354560pyp;q' - 215126016ptp~q' + 5376plq4 - 935424p:q4 

+ 20330496piq4 - 126203904p;q4 + 36518784p;q5 - 2231808p;q5 + 42233856p;piq' 

+ 1'J752Pyp5 - 1993728py~1q~ -t 42233856pyp;q5 + 10752p~q5 - 2231808p2q5 

+ 36518784pTq5 - 1975296p;q6 + 13824ptq6 - 1462272pyplq' + 13824p1q6 

- 1975296p;q6 + 10368pyq' + 10368p1q7] 

2 2 2  

1 7'0 --- @ 1o!5! [952320p7q + 11904Wp;q + 864WOp;q + 10368Wp;plq + 46080Dp;q 

+ i555i00p3,1q + i6igop;q + r " o " r n n ~ ~ 5 ~ ~  Laa'w"pIply + Pn<nn-5L. o~L'"Yrt'lY + ::3cMp;p;v^ 

+ 806400pfpiq + 1382400pfp;q + 3456Wp;p;q + 1612800p;p;q + 9216Wp;p;q 

+ 3456OOp;p;q + 153600p~p;q + 16128Wp;pfq + 13824Wp';pfq + 6912Wp;p;q 

+ 806400pyp;q + 13824oOpyp;q + 1555200pyp:q f 103680Opyp;q + 161280p~q 

+ 460800p7q + 8640Wp;q + 119MOOp:q + 952320pyq - 63012864Opeq' 

- 7446ss8000p;q2 - 74649600pip1q2 - 40320W00p~q2 - 969408000p;piq2 

- 85939200p;q2 - l187020800p;ptq2 - 200140800p;p~q2 - 77414400p;p:q2 

+ 39352320p;q2 - 597657600p;p1q2 - 1073894400pfp;q2 - 2514432Wp;p:q2 

+ 165312000p7plq2 - 13794816OOp~p;q' - 571468800p;pfq2 - 2514432Wp;pfq2 

- 77414400p;p;q2 + 25190400Op;p~q' - 1379481600p;p~q2 - 1073894400p7pfg2 

- 20014080Dpfpfqi + 165312000ptp~q2 - 597657600ptp~q' - 1187020800pyp~q? 

- 96940S000p~p~q2 - 74649600pyp;q2 + 39352320pfq' - 85939200p;q2 

- 40J2woOOp~q2 - 746688000p;q2 - 630128640p7q2 + 290238S7360p;q3 

+ 23422348800p7q3 + 14880153600p~plq3 + 4591929600p;q3 + 51032140800p;p1q3 
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6 2 3  

I 3 3  

+ 23998464Wtplq - 2543846400p;q3 + 29611699200pfplq3 + 34007347200pfp;q3 

+ 54964224'%tPlq + 165473280p;q3 - 9628915200p;p1q3 + 615826560Mp;p;q3 

f 17555558400P;P;q3 + 54964224Wp;pfq3 + 540288000p;p1q3 - 14184192000p;p;q3 

+ 61@2656"W;p;q3 + 34W73472004p;q3 + 2399846400p;p;q3 + 5402880Wp,p;q3 

- 96289152Mprpld + 296116992Mptp;q3 t 510321408Wp~p;q~ + 148801536M)ptp:q3 

f 165473280p;q3 - 2543846400p;q3 + 4591929600piq3 + 234223488wp:q3 

+ 29023887360p;q3 - 282321223680p7q' - 932062848M)p;q' - 295217049600p~p1q' 

+ 3263569920Op;q' - 370150579ZWpfplq' - 1599381504Mp;p;q' - 25438464OOp;q' 

+ 92649984WOP;plq' - 562187827200p:p;q4 - 938262528Mp~p;q' + 39352320p;q' 

- 60763776Oop;p~q' + 117339648oOOp;p;q' - 5621878272Mp:p:q' - 159938150400p;p;q' 

+ 87384Wpyplq' - 60763776Mptp;q' + 92649984000ptplq4 - 370150579200pTp;q4 

- 295217049600ptp~q' + 3935232Opiq' - 2543846400p;q4 + 326356992oOp;q' 

- 93206284800p;q' - 282321223680p:q4 + 69286656M00p;q5 - 93206284800pfq5 

+ 11201642496Wp;p~q5 + 45919296OOp;q' - 1161323904Mp~p~q5 + 1250784460800p;p;q5 

- 85939200p;q5 + 3083808WOp;p1q5 - 1248503808Wp;pfq5 + 1250784460800p;p;q5 

+ 161280ptq5 - 15974400ptplq5 + 30838080Mptpfq5 - 116132390400ptp:q5 

+ l120164249600p~p;qs + 161280p~q5 - 85939200piq5 + 4591929600p~q5 

- 93206284800p;q5 + 692@66560000p~q5 - 282321223680p;qe + 2342238800p;q6 

- 342130176ooOp;prq' - 4032M000p;qa + 220488448bop;p~q6 - 319876300800p;p;q' 

+ 460800p7q6 - 25628160Op~p1q' + 2200884480Opyp;q' - 3421301760Mptp;q6 

+ 46mOOp1q' - 403200000p.1q6 + 2342234880Op~q' - 282321223680pfq' 

+ 29023887360p;q' - 746€88000p;q7 + 22776422400p;p1q7 t 864000ptq7 

- 4512768OOp~p~q' + 22776422400ptp;q7 + 864000p1q7 - 746688000p3q' 

+ 29023887360p;q' - 630128640p;q8 + 1190400pyq8 - 304128000pyplq8 

+ 11WJ400p~q8 - 630128640p:q8 + 952320ptq9 +952320p~q*] + O(T''). 
(A5) 

The parameters P ,  p T ,  p , ,  p ,  q, t ,  r are defined in the text. 
When the external magnetic field h = 0, p T  = p and p i  = p and (A5) becomes 

1 4 7' 1 T4 
d P , P r t ) =  P h ( 1 - 2 P ) -  p ~ p q -  ~ ~ ~ q ( 6 4 ~ + 1 6 p ' + 3 2 q - 4 4 8 p q + 1 6 q ' )  

1 7' 2 Pq(192Op + 1152p3 + 384p4 + 7872pq - 80640p2q - 33024p3q + 480q2 - 35136pq' P 6!3! 

+ 347904p'q' + 576$ - 33024pq3 + 384q') 
1 78 

4 8!4! 
pq(86016p3 + 86016~' + 5 5 2 % ~ ~  + 20736~' + 2102784p'q - 1 6 5 6 4 2 2 4 ~ ~ ~  - 14674944p'q 

- 5412864p5q+ 1053696~9' - 40719360p2q2 + 272338944p3q2 + 1575ffi280p'q2 + 10752q3 

- 2758656pq3 + 97310112p2q3 - 9243648Wp3q3 + 21504q4 - 6457344~9' + 157~5280p2q4 

t 2764Sq5 - 5412864pq5 + 20736q') 
1 7 ' 0  

pq(5160980p4 + 7 3 7 2 8 0 0 ~ ~  + 69120U)p' + 4761600p' + 1 9 0 4 6 4 0 ~ ~  + 66123264Op'q P 10!5! 

- 4126156800p4q - 589%99200P5q - 433536OwOp'q - 156438528Op'q + 1411522560p2q2 

- 385ZW15200p3q2 + 191572569600p4q2 t 234479232MOp'q' + 103600619520p'q' 

t 1661M040pq3 - 17240448000p2q3 + 3679110144Wp3q3 - 2051089382400p4q3 
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- 1568779100160p5q3 + 322560q' - 187852800pq' + 15351475200p2q' 
- 543527731200p3q4 + 6127630540800p'q' + 921600q5 - 1062681Mx)pq5 
+ 9086U87Z00pZq5 - 1568779100160p3q5 + 1728000qe - 19446528Wpq6 
+ 103600619520pZqe + 2380800q' - 1564385280pq' + 1904640q8) + O(712). (A5) 
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